A nonconforming combination of the finite element and volume methods with an anisotropic mesh refinement for a singularly perturbed convection-diffusion equation
نویسندگان
چکیده
In this paper we formulate and analyze a discretization method for a 2D linear singularly perturbed convection-diffusion problem with a singular perturbation parameter ε. The method is based on a nonconforming combination of the conventional Galerkin piecewise linear triangular finite element method and an exponentially fitted finite volume method, and on a mixture of triangular and rectangular elements. It is shown that the method is stable with respect to a semi-discrete energy norm and the approximation error in the semi-discrete energy norm is bounded by Ch ∣∣∣∣ ln ε lnh ∣∣∣∣ with C independent of the mesh parameter h, the diffusion coefficient ε and the exact solution of the problem.
منابع مشابه
On Convergence of the Exponentially Fitted Finite Volume Method with an Anisotropic Mesh Refinement for a Singularly Perturbed Convection-Diffusion Equation
This paper presents a convergence analysis for the exponentially fitted finite volume method in 2 dimensions applied to a linear singularly perturbed convection-diffusion equation with exponential boundary layers. The method is formulated as a non-conforming Petrov-Galerkin finite element element method with an exponentially fitted trial space and a piecewise constant test space. The correspond...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 72 شماره
صفحات -
تاریخ انتشار 2003